Component Matching Issues

Component Matching Issues

- Effective component sizes differ from mask sizes
- Examples
 - Lateral diffusion due to
 - Ion implantation
 - Annealing
 - Overetching

- High doping density at the sides of transistors
 Due to channel stop implantation
- > Decrease channel charge density at edges
- > Decrease effective channel width

Component Matching Issues (Cont.)

- Absolute component sizes can seldom be accurately determined. The inaccuracies also affect the ratio of sizes (with a lesser degree) when the ratio is not unity.
- Matching second-order size error effects is done mainly by making larger objects out of several unit-sized components connected together. Also, for best ratio accuracy, the boundary conditions around all objects should be matched, even when this means adding extra unused components. (Examples given later)
- Mismatch profile
 - Random mismatch
 - Gradient mismatch

Component Matching Issues (Cont.)

• Random mismatch: Larger capacitance area \rightarrow Smaller mismatch (%)

• Gradient mismatch: Larger capacitance spacing \rightarrow Larger mismatch (%)

Prof. Tai-Haur Kuo, EE, NCKU, Tainan City, Taiwan

Transistor Layouts

- Common-centroid layout for better matching accuracy
- Example: A differential source-coupled pair

- The layout for M₁ and M₂ is symmetric in both the X and Y axes, and any gradients would affect both M₁ and M₂ in the same way
- This layout technique greatly minimize nonidealities such as OPAMP input-offset voltage errors when using a differential pair (M₁/M₂, M₃/M₄) in the input stage of an OPAMP

Prof. Tai-Haur Kuo, EE, NCKU, Tainan City, Taiwan

Capacitor Matching

- Two major sources of match errors are due to
 - Oxide-thickness gradient
 - Common-centroid layout can be used to minimize this error
 - Over-etching
 - > Capacitor area is smaller than mask area

Capacitor Matching (Cont.)

- Error can be minimized
 - Use unit-sized capacitor
 - Perimeter-to-area ratios are kept the same, even where the capacitors are different sizes (Refer to p.104~106 of textbook).
 e.g. A capacitor layout with equal 10μm 10μm 6.72μm perimeter-to-area ratios of 4 units 10μm 10μm 10μm 10μm 10μm 10μm 10μm
- To minimize 2nd-order effect (Refer to p.106~107 of textbook)

Resistor Matching

 The structure below might result in about 0.1% matching accuracy of identical resistors if the finger widths are relatively wide (say, 3µm in a 28nm technology)

Noise Considerations in Analog Layout

- Minimize noise in analog circuits
 - Minimize noise from digital circuits coupling into substrate or analog power supplies
 - Minimize substrate noise that affects analog circuits
- Example of noise reduction technique (Refer to p.109~112 of textbook)
 - Use separate nets for analog and digital power supplies

Noise Considerations in Analog Layout (Cont.)

- Examples of noise reduction technique (Cont.)
 - Separating analog and digital areas with guard rings and wells in an attempt to minimize the injection of noise from digital circuits into the substrate under the analog circuit.

Noise Considerations in Analog Layout (Cont.)

- Any unused space should be filled with additional contacts to both the substrate and to the wells, which are used as bypass capacitors.
- A possible floorplan for an analog section containing switched-capacitor circuits.

Mismatch Effects in MOSFET Current Mirrors

- Mismatch between M1 and M2: W/L ratio & Threshold voltage
- Mathematical expression
 - Drain currents of M1 and M2

$$I_{D1} = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L}\right)_1 (V_{GS} - V_{t1})^2, I_{D2} = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L}\right)_2 (V_{GS} - V_{t2})^2$$

Define average and mismatch quantities

$$\begin{split} I_{\rm D} &= \frac{I_{\rm D1} + I_{\rm D2}}{2}, \Delta I_{\rm D} = I_{\rm D1} - I_{\rm D2} \qquad V_{\rm t} = \frac{V_{\rm t1} + V_{\rm t2}}{2}, \ \Delta V_{\rm t} = V_{\rm t1} - V_{\rm t2} \\ \frac{W}{L} &= \frac{1}{2} \Big[\Big(\frac{W}{L} \Big)_1 + \Big(\frac{W}{L} \Big)_2 \Big], \ \Delta \frac{W}{L} = \Big(\frac{W}{L} \Big)_1 - \Big(\frac{W}{L} \Big)_2 \end{split}$$

$$\frac{\Delta I_D}{I_D} = \frac{\frac{1}{2}\mu_n C_{ox} [\left(\frac{W}{L} + \frac{1}{2}\Delta\frac{W}{L}\right) \left(V_{GS} - V_t - \frac{1}{2}\Delta V_t\right)^2 - \left(\frac{W}{L} - \frac{1}{2}\Delta\frac{W}{L}\right) \left(V_{GS} - V_t + \frac{1}{2}\Delta V_t\right)^2]}{\frac{1}{2} \times \frac{1}{2}\mu_n C_{ox} [\left(\frac{W}{L} + \frac{1}{2}\Delta\frac{W}{L}\right) \left(V_{GS} - V_t - \frac{1}{2}\Delta V_t\right)^2 + \left(\frac{W}{L} - \frac{1}{2}\Delta\frac{W}{L}\right) \left(V_{GS} - V_t + \frac{1}{2}\Delta V_t\right)^2]} \approx \frac{\Delta\frac{W}{L}}{\frac{W}{L}} - \frac{2}{(V_{GS} - V_t)}\Delta V_t$$

- > Two mismatch components
 - Geometry dependent mismatch & Threshold voltage mismatch
- > I_D mismatch increases as (V_{GS}-V_t) is reduced

 V_{DD}

M₁

MN

 I_{D1}

 M_2

 I_{D2}

Mismatch Effects in BJT Current Mirrors

Input Offset Voltage of Source-Coupled MOS Pair

- V_{os} : Differential voltage \rightarrow Make differential output voltage exactly zero
- Define difference and average quantities

- > Threshold voltage mismatch
- > Geometry dependent mismatch \rightarrow Increase as (V_{GS}-V_t) is increased
- For same level of geometric mismatch or process gradient: V_{os}(MOSFET) > V_{os}(BJT)

Input Offset Voltage of Emitter-Couple BJT Pair

• Offset voltage with resistor load

$$V_{os} \approx V_T \left(-\frac{\Delta R_c}{R_c} - \frac{\Delta I_s}{I_s}\right); \quad \frac{dV_{os}}{dT} = \frac{V_{os}}{T}$$

Offset current with resistor load

$$I_{os} \approx -\frac{I_c}{\beta_F} \frac{\Delta R_c}{R_c} - \frac{I_c}{\beta_F} \frac{\Delta \beta_F}{\beta_F}$$

Common-Centroid Layout of BJT Pair

Input Offset Voltage of MOS OPAMP

• Assume that the matching is perfect with inputs grounded

 $V_{OUT} = V_{DD} - |V_{GS3}| \dots (1)$

• Differential input required to drive the output to the value given by (1) is the inputreferred offset voltage. With device mismatch, offset is usually nonzero.

$$V_{ID} = V_{GS1} - V_{GS2} = V_{t1} + V_{ov1} - V_{t2} - V_{ov2} \dots (2)$$

• Assume that λ of M₁ & M₂ are identical (V_{DS1} = V_{DS2} = V_{DSN} when V_{ID} = V_{OS})

$$V_{OS} = V_{t1} - V_{t2} + \sqrt{\frac{1}{1 + \lambda_N V_{DSN}}} \left(\sqrt{\frac{2I_1}{k'(W/L)_1}} - \sqrt{\frac{2I_2}{k'(W/L)_2}} \right) \dots (3)$$

• Assume that the mismatches are small

$$V_{OS} \approx V_{t1} - V_{t2} + \frac{V_{ovN}}{2} \left(\frac{\Delta I_N}{I_N} - \frac{\Delta (W/L)_N}{(W/L)_N} \right) \dots (4)$$

where

$$V_{ovN} = \sqrt{\frac{2I_N}{k'(W/L)_N(1+\lambda_N V_{DSN})}}...(5)$$

$$\Delta I_N = I_1 - I_2...(6)$$

$$\Delta (W/L)_N = (W/L)_1 - (W/L)_2...(8)$$

$$(W/L)_N = \frac{(W/L)_1 + (W/L)_2}{2}...(9)$$

Prof. Tai-Haur Kuo, EE, NCKU, Tainan City, Taiwan

V_{DD}

Vout

M3

Input Offset Voltage of MOS OPAMP (Cont.)

• Since $I_1 = -I_3 \& I_2 = -I_4$, where

 $\frac{\Delta I_{\rm N}}{I_{\rm N}} = \frac{\Delta I_{\rm P}}{I_{\rm P}}...(10) \qquad \Delta I_{\rm P} = I_3 - I_4...(11) \qquad I_{\rm P} = \frac{I_3 + I_4}{2}...(12)$

• Use KVL in the gate-source loop in the load to find $\Delta I_p/I_p$

$$0 = V_{GS3} - V_{GS4} = V_{t3} + V_{OV3} - V_{t4} - V_{OV4}...(13)$$

Since M3 and M4 are p-channel transistors, their overdrives are negative. Assume that the Early voltages of M3 and M4 are identical. Since V_{DS3}=V_{DS4}=V_{DSP} when V_{ID}=V_{OS}, (13) can be rewritten as

$$0 = V_{t3} - V_{t4} - \sqrt{\frac{1}{1 + |\lambda_P V_{DSP}|}} \left(\sqrt{\frac{2|I_3|}{k'(W/L)_3}} - \sqrt{\frac{2|I_4|}{k'(W/L)_4}} \right) \dots (14)$$

- In (14), absolute value functions have been used
 - The arguments of the square-root functions are positive

郭泰豪, Analog IC Design, 2023

Input Offset Voltage of MOS OPAMP (Cont.)

If the mismatches are small, (14) can be approximated as

$$\frac{\Delta I_{\rm P}}{I_{\rm P}} \approx \frac{V_{\rm t3} - V_{\rm t4}}{|V_{\rm ovP}|/2} + \frac{\Delta (W/L)_{\rm P}}{(W/L)_{\rm P}}...(15)$$

where $|V_{OVP}| = \sqrt{\frac{2|I_P|}{k'(W/L)_P(1+|\lambda_P V_{DSP}|)}}...(16)$

$$\Delta(W/L)_{P} = (W/L)_{3} - (W/L)_{4}...(17)$$

$$(W/L)_{P} = \frac{(W/L)_{3} + (W/L)_{4}}{2} \dots (18)$$

• Substitute (15) and (10) into (4) gives

$$V_{OS} \approx V_{t1} - V_{t2} + \frac{V_{ovN}}{2} \left(\frac{V_{t3} - V_{t4}}{\frac{|V_{ovP}|}{2}} + \frac{\Delta(W/L)_P}{(W/L)_P} - \frac{\Delta(W/L)_N}{(W/L)_N} \right) \dots (19)$$

Parameter Relevant for Transistor Performance

• T-like 0.18µm process

Parameter	Symbol	Typical value	Absolute accuracy	Matching accuracy
Threshold	V _{th}	0.45 V	\pm 0.15 V	5 mV
Gamma	γ	0.3 ~ 0.6	-	-
Mobility (n)	μ_n	250cm ² /Vsec	± 10%	-
Mobility (p)	μ_p	80cm²/Vsec	± 15%	-
Oxide capacitance	C _{ox}	9fF/µm ²	-	-
Length	L	-	0.015 µm	-
Width	W	-	0.02 µm	-

Parameter Relevant for Capacitor Performance

• T-like 0.18µm process

Parameter	Symbol	Typical value	Absolute accuracy	Matching accuracy
Dielectric	$\varepsilon_{R(SiO_2)}$	3.9	-	-
Oxide thickness	t _{ox}	4.2 ± 0.2 nm	± 5%	-
Poly-oxide thick	t _{p,ox}	25 nm	-	-
MIM capacitor	C _{unit}	$6.1 fF/\mu m^2$	-	0.4% on p-well 0.07% on n-well
VCC(PIP)	VCC	< 150 ppm	-	-
TCC(PIP)	TCC	< 50 ppm	-	-

Parameter Relevant for Resistor Performance

• T-like 0.18µm process

Parameter	Symbol	Typical value	Absolute accuracy	Matching accuracy
Diff. resistivity	Ρ _{diff}	200 Ω/sq	25 %	2 %
Poly resistivity	$ ho_{poly}$	150 Ω/sq	20 %	4 %
Diff. thickness	x _{j,diff}	80 nm	15 %	0.5 %
Poly thickness	x _{j,poly}	80~100 nm	15 %	1 %